
Unsupervised Anomaly Detection in Energy Time Series Data using
Variational Recurrent Autoencoders with Attention

João Pereira
Instituto Superior Técnico

University of Lisbon
Lisbon, Portugal

joao.p.cardoso.pereira@tecnico.ulisboa.pt

Margarida Silveira
Institute for Systems and Robotics, Instituto Superior Técnico

University of Lisbon
Lisbon, Portugal

msilveira@isr.tecnico.ulisboa.pt

Abstract—In the age of big data, time series are being gen-
erated in massive amounts. In the energy field, smart grids are
enabling a unprecedented data acquisition with the integration of
sensors and smart devices. In the context of renewable energies,
there has been an increasing interest in solar photovoltaic energy
generation. These installations are often integrated with smart
sensors that measure the energy production. Such amount of
data collected makes the quest for developing smart monitoring
systems that can detect anomalous behaviour in these systems,
trigger alerts and enable maintenance operations.

In this paper, we propose a generic, unsupervised and scalable
framework for anomaly detection in time series data, based
on a variational recurrent autoencoder. Furthermore, we in-
troduce attention in the model, by means of a variational self-
attention mechanism (VSAM), to improve the performance of the
encoding-decoding process. Afterwards, we perform anomaly de-
tection based on the probabilistic reconstruction scores provided
by our model.

Our results on solar energy generation time series show the
ability of the proposed approach to detect anomalous behaviour
in time series data, while providing structured and expressive
representations. Since it does not need labels to be trained, our
methodology enables new applications for anomaly detection in
energy time series data and beyond.

Index Terms—Anomaly Detection, Variational Recurrent Au-
toencoder, Attention, Solar Photovoltaic Energy

I. INTRODUCTION

One of the key assets of the smart grid is the data it collects.
The data gathered from smart meters in the grid makes it
possible to develop machine learning algorithms that can
analyse and monitor the data collected and detect anomalous
behaviour. With the integration of renewable energy sources
such as solar photovoltaic, it is important to ensure reliability,
security and correct operation of these systems in order
to promote good performances and a long lifetime of the
equipments.

The problem of finding patterns in data that do not conform
to expected or normal behaviour is often referred to as
Anomaly Detection (AD) [1]. Over time many approaches to
anomaly detection have been proposed. In particular, with the
progress made in deep learning, new frameworks to tackle the
challenges of anomaly detection were developed. However, a
significant amount of these approaches are based on supervised
machine learning models that require (big) labelled datasets
to be trained. In the context of applications such as energy,
annotating large datasets is difficult, time-consuming or even

too expensive, while it requires domain knowledge from
experts in the field. The lack of labels is, indeed, one of
the reasons why anomaly detection has been such a great
challenge for researchers and practitioners.

Furthermore, some of the proposed methods do not consider
the sequential nature of the data by assuming it is independent
in time. Smart grid data is often sequential by nature and
mostly time series and, hence, it is crucial to take into account
the order and structure of the data.

The main contributions of this work can be summarized as
follows:

• Unsupervised reconstruction-based model using a varia-
tional autoencoder with recurrent encoder and decoder;

• Variational self-attention mechanism to improve the
encoding-decoding process;

• Generic framework for anomaly detection in time series
data;

• Application to solar photovoltaic generation time series.

II. BACKGROUND

In this section, we revise autoencoders, recurrent neural net-
works, attention mechanisms and autoencoder-based anomaly
detection.

A. Autoencoder (AE)

Autoencoders [2, 3] are neural networks that aim to recon-
struct their input. They consist of two parts: an encoder and
a decoder. The encoder maps input data x ∈ Rdx to a latent
space (or code) z ∈ Rdz and the decoder maps back from
latent space to input space.

The autoencoders training procedure is unsupervised and it
consists of finding the parameters that make the reconstruction
x̂ as close as possible to the original input x, by minimizing a
loss function that measures the quality of the reconstructions
(e.g., mean squared error).

Typically the latent space z has a lower dimensionality than
the input space x and, hence, AEs are forced to learn com-
pressed representations of the input data. This characteristic
makes them suitable for dimensionality reduction (DR) tasks,
where they were proven to perform much better than other DR
techniques, such as Principal Component Analysis [4].

ACCEPTED FOR ORAL PRESENTATION AT THE 2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS

mailto:joao.p.cardoso.pereira@tecnico.ulisboa.pt
mailto:msilveira@isr.tecnico.ulisboa.pt

B. Variational Autoencoder (VAE)

The variational autoencoder [5, 6] is a deep generative
model that constrains the latent code z of the conventional
AE to be a random variable distributed according to a prior
distribution pθ (z), usually a standard Normal distribution,
Normal(0, I). Since the true posterior pθ(z|x) is intractable
for a continuous latent space z, the variational inference
technique is often used to find a deterministic approximation,
qφ(z|x), of the intractable true posterior. The parameters of
the approximate posterior qφ(z|x), often called the variational
parameters, are derived using neural networks (e.g., mean µz

and variance σ2
z, in the case of a Normal distribution).

Hence, the training objective of the VAE is to maximize
the evidence lower bound (ELBO) on the training data log-
likelihood. For a data point x, the evidence lower bound is
given by the following equation, where θ and φ are the encoder
and decoder parameters, respectively.

LELBO(θ, φ;x) = Eqφ(z|x)
[
log pθ(x|z)

]
−DKL

(
qφ(z|x)‖pθ(z)

)
The expectation in the equation above can be approximated
by Monte Carlo integration. The second term represents the
Kullback-Leibler divergence (DKL) between the approximate
posterior and the prior. The distribution for the likelihood is
usually a multivariate Normal or Bernoulli, depending on the
type of data being continuous or binary, respectively.

C. RNNs, LSTMs and Bi-LSTMs

Conventional (feed-forward) neural networks make the as-
sumption that data is independent in time. However, this as-
sumption does not hold for sequential data, such as time series.
Therefore, with time series data, recurrent neural networks
(RNNs) are often used.
RNNs are powerful sequence learners designed to capture the
temporal dependencies of the data by introducing memory.
They read a sequence of input vectors x = (x1,x2, ...,xT)
and, at each timestep t, they produce a hidden state ht. The
main feature of RNNs is a feedback connection that establishes
a recurrence mechanism that decides how the hidden states ht
are updated. In simple ”vanilla” RNNs, the hidden states ht
are updated based on the current input, xt, and the hidden state
at the previous timestep, ht−1, as ht = f(Uxt + Wht−1).
f is usually a tanh or sigmoid function and U and W are
weight matrices to learn, shared across timesteps. The hidden
state ht can, thus, be interpreted as a summary of the sequence
of input vectors up to timestep t. Given a sequence of hidden
states ht, a RNN can generate an output, ot, at every timestep
or produce a single output, oT , in the last timestep.

Despite the effectiveness of RNNs for modeling sequential
data, they suffer from the vanishing gradient problem, that
arises when the output at timestep t depends on inputs much
earlier in time. Therefore, long short-term memory networks
(LSTMs) [7, 8] were proposed to overcome this problem and
they do so by means of a memory cell and three gates. The
memory cell (ct) stores information about the input sequence
across timesteps. The gates are functions that control the
proportion of the current input to include in the memory cell

(it), the proportion of the previous memory cell to forget (ft)
and the information to output from the current memory cell
(ot). The memory updates, at each timestep t, are computed
as follows:

it = σ(Wiht−1 + Uixt) (1)
ft = σ(Wfht−1 + Ufxt) (2)
ot = σ(Woht−1 + Uoxt) (3)
ct = ft � ct−1 + it � tanh(Wcht−1 + Ucxt) (4)
ht = ot � tanh(ct) (5)

In the previous equations, it, ft, ot, ct and ht denote the input
gate, the forget gate, the output gate, the memory cell and the
hidden state, respectively. � denotes an element-wise product.
The other parameters are weight matrices to be learned, shared
between all timesteps.

LSTMs can still not integrate information from future
instants of time and, therefore, bidirectional long short-term
memory networks (Bi-LSTMs) [9] were proposed. Bi-LSTMs
exploit the input sequence, x, in both directions by means
of two LSTMs: one executes a forward pass and the other
a backward pass. Hence, two hidden states (

−→
h t and

←−
h t) are

produced for timestep t, one in each direction. These states act
like a summary of the past and the future. The hidden states
at similar timesteps are often aggregated into a unique vector
ht =

[−→
h t;
←−
h t

]
that represents the whole context around

timestep t, typically through concatenation.

D. Sequence to Sequence Models and Attention Mechanisms

The sequence to sequence (Seq2Seq) learning framework
[10, 11] is often linked with a class of encoder-decoder mod-
els, in which the encoder and decoder are RNNs. The encoder
reads a variable-length input sequence x = (x1,x2, ...,xTx) ∈
RTx×dx and converts it into a fixed-length vector represen-
tation (or context vector), z ∈ Rdz , and the decoder takes
this vector representation and converts it back into a variable-
length sequence y = (y1,y2, ...,yTy) ∈ RTy×dy . In general,
the learned vector representation corresponds to the final hid-
den state of the encoder network, which acts like a summary
of the whole sequence. A particular instance of a Seq2Seq
model is the Seq2Seq autoencoder, in which the input and
output sequences are aligned in time (x = y) and, thus, have
equal lengths (Tx = Ty).

Seq2Seq models have their weakness in tackling long se-
quences (e.g., long time series), mainly because the interme-
diate vector representation z does not have enough capacity
to capture information of the entire input sequence x.
Therefore, attention mechanisms were proposed to allow the
decoder to selectively attend to relevant encoded hidden states.
Several attention models were proposed in the past few years
[12, 13] and, in general, they operate as follows. At each
timestep t, during decoding, the attention model computes
a context vector ct obtained by a weighted sum of all the
encoder hidden states. The weights of the sum, aij , are
computed by a score function that measures the similarity
between the currently decoded hidden state, hd

t , and all the

encoded hidden states he = (he
1,h

e
2, ...,h

e
Tx
). Afterwards,

these scores are normalized using the softmax function, so that
they sum to 1 along the second dimension. The computation
of the weights and the context vectors can be described as
follows:

ati =
exp (score(hd

t ,h
e
i))∑Tx

j=1 exp (score(h
d
t ,h

e
j))

(6)

ct =

Tx∑
j=1

atjhj (7)

Attention mechanisms were developed mainly for natural
language processing (NLP) tasks and improved significantly
the performance of Seq2Seq models in applications such as
machine translation [12]. Even though attention has been
mostly applied to NLP problems involving text data, it is
suitable for other tasks dealing with other types of data such as
time series and videos. In fact, attention is a natural extension
of Seq2Seq models for any kind of sequential data.

E. Autoencoder-based Anomaly Detection

The main idea behind autoencoder-based anomaly detection
is to focus on what is normal, rather than modelling what
is anomalous. The autoencoder is trained to reconstruct data
with normal pattern (e.g., normal time series) by minimizing a
loss function that measures the quality of the reconstructions.
After training, the model is able to reconstruct well data with
normal pattern, while it fails reconstruct anomalous data, since
it never saw them during training. The detection is performed
using the reconstruction metrics (e.g., reconstruction error)
as anomaly score. In other words, the model learns a normal
data manifold and the distance between a given observation
and the normal data manifold is used to compute anomaly
scores, either in the latent space of representations, z, or in
the reconstructions space, x̂.

III. RELATED WORK

The work on anomaly detection in time series data has
increased significantly over the past few years and has bene-
fited from the progress made in deep learning. In particular,
Seq2Seq and autoencoder models have been applied with suc-
cess to time series AD tasks. Using this framework, Malhotra
et al. [14] proposed a prediction-based model based on LSTMs
and used the distribution of the prediction errors to compute
anomaly scores. However, this approach is not suitable for time
series affected by external factors not captured by sensors,
making them unpredictable. Later on, reconstruction-based
approaches were proposed to overcome this limitation, such as
[15], which try to reconstruct the input time series and use the
reconstruction errors as anomaly scores. After the introduction
of the variational autoencoder, Bayer and Osendorfer [16] used
variational inference and RNNs to model time series data and
introduced stochastic recurrent networks (STORNs), which
were subsequently applied to anomaly detection in robot time
series data [17]. An and Cho [18] proposed a method based on

a VAE and introduced a novel probabilistic anomaly score that
takes into account the variability of the data (the reconstruction
probability). Recently, Park et al. [19] applied a LSTM-based
variational autoencoder to AD in robot assisted feeding data
and introduced a progress-based prior over the latent variables.
Finally, Xu et al. [20] applied a VAE to AD in seasonal
key performance indicators (KPIs) time series and provided
a theoretical explanation for VAE-based anomaly detection.

IV. PROPOSED MODEL

In this section we describe our proposed approach, that
relies on two fundamental stages: the reconstruction model
(autoencoder) and the detection strategy. Let X = {x(n)}Nn=1

denote a dataset composed of N independent sequences
of observations. Each sequence x(n) has T timesteps, i.e.
x(n) = (x

(n)
1 ,x

(n)
2 , ...,x

(n)
T), and each observation at timestep

t, x
(n)
t , is a dx-dimensional vector. Therefore, the dataset X

has dimensions (N,T, dx).

A. Variational Bi-LSTM Autoencoder

The model takes as input a sequence of observations x =
(x1,x2, ...,xT). We then apply a denoising autoencoding cri-
terion [21] that consists on adding noise n ∼ Normal(0,σ2

nI)
to the inputs and force the autoencoder to reconstruct the clean
version of the input, x, from the corrupted one, x̃. Since it is
a regularization technique, this phase is only active at training
time. The encoder is parametrized using a Bi-LSTM with tanh
activation that generates a sequence of hidden states in both
directions, forward −→ and backward ←−. The final encoder
hidden states of both passes are concatenated with each other
to produce the vector he

T =
[−→

h e
T ;
←−
h e
T

]
.

The prior distribution pθ(z) over the latent variables z is
defined as an isotropic multivariate Normal, i.e. pθ(z) =
Normal(0, I). The parameters of the approximate posterior -
the mean µz and the co-variance Σz = σ2

zI - are derived from
the final encoder hidden state he

T using two fully connected
layers with Linear and SoftPlus activations, respectively.
To simplify the implementation of the denoising criterion, we
adopted the same approach as Park et al. [19] and define the
approximate posterior given a corruption distribution around
x with a single Gaussian, i.e. q̃φ(z|x) ≈ qφ(z|x̃), instead
of a mixture of Gaussians as in [21]. The latent variables
are obtained by sampling from the approximate posterior,
z ∼ Normal(µz,σzI), using the re-parametrization trick
z = µz + σz � ε, where ε ∼ Normal(0, I) is an auxiliary
noise variable and � represents an element-wise product.

Furthermore, we integrate a special attention mechanism
in the reconstruction model, that we call Variational Self-
Attention Mechanism (VSAM). The self-attention model re-
ceives as input a sequence of encoded hidden states and
outputs a sequence of context vectors ct, with the same length
(T), each one of them computed as a weighted sum of all
the encoded hidden states. In detail, the mechanism works as
follows. First, the relevance of every pair of encoded hidden
states he

i and he
j is scored (eq. 8) using the scaled dot-

product similarity, employed in Transformer [22] (a neural

network model for NLP, based on a self-attention mechanism).
The use of the dot-product as relevance measure makes the
self-attention model more efficient than previous attention
mechanisms that need to learn a similarity matrix.

sij = score(he
i ,h

e
j) =

(he
i)
T
he
j√

dhe

(8)

In equation 8, dhe is the size of the encoder Bi-LSTM state.
Second, the attention weights aij are computed by normalizing
the scores over the second dimension, as in equation 9, where
at = (at1, at2, ..., atT). This normalisation ensures that, for
each timestep t,

∑T
j=1 atj = 1.

at = softmax(st) (9)

Finally, for deriving the new context-aware vector represen-
tations ct we adopted a variational approach. This choice
is motivated by the bypassing phenomenon pointed out by
Bahuleyan et al. [23]. In fact, if the decoder has a direct
and deterministic access to the encoder hidden states through
attention, the latent code z may not be forced to learn
expressive representations, since the self-attention mechanism
could bypass most of the information to the decoder. This
problem can be solved by applying to the context vectors
ct the same constraint applied to the latent variables of the
VAE, by modelling them as random variables. To do so, we
first compute deterministic context vectors, cdet

t =
∑T
j=1 atjhj

and then transform them using another layer, similarly to [23].
The prior distribution over the context vectors is defined as a
standard Normal, p(ct) = Normal(0, I), and the parameters of
the approximate posterior q̃aφ(ct|x), µct and Σct , are derived
in similar fashion to the latent variables z, including the di-
mensionality (dct = dz). The final context vectors are sampled
from the approximate posterior, ct ∼ Normal(µct ,Σct).

The decoder is also a Bi-LSTM with tanh activation that
receives, at each timestep t, a latent representation z, shared
across timesteps, and a context vector ct. Unlike other works
that use a Normal distribution for pθ(xt|z), we use a Laplace
distribution with parameters µxt and bxt . The practical im-
plication of this choice is that the training objective aims
to minimize an `1 reconstruction loss ∝ ‖xt − µxt‖1 rather
than an `2 reconstruction loss ∝ ‖xt − µxt‖22. The `1-norm
promotes sparse reconstruction errors. Such a choice is moti-
vated by the assumption that anomalous observations are rare
and sparse, which is, indeed, the case in several applications
of interest. The outputs of the decoder are the parameters
of the reconstructed distribution of the input sequence of
observations, µxt and bxt . These parameters are derived from
the decoder Bi-LSTM hidden states using two fully connected
layers with Linear and SoftPlus activations, respectively.
The loss function for a particular sequence x(n) is given by:

L(θ, φ;x(n)) = −Ez∼q̃φ(z|x(n)),ct∼q̃aφ(ct|x(n))

[
log pθ(x

(n)|z, c)
]

+ λKL

[
DKL

(
q̃φ(z|x(n))‖pθ(z)

)
+ η

T∑
t=1

DKL

(
q̃aφ(ct|x(n))‖p(ct)

)]

where λKL weights the reconstruction and KL losses and η
balances the attention KL loss and the latent space KL loss.
Figure 1 illustrates the proposed model.

Encoder
Bi-LSTM

−→
h e

1

←−
h e

1

−→
h e

2

←−
h e

2

−→
h e

3

←−
h e

3

−→
h e

T

←−
h e

T

+n +n +n +n

x1 x2 x3 xTInput sequence

• • •

• • •

µz

σz

z

z ∼ Normal(µz,Σz)

−→
h d

1

←−
h d

1

−→
h d

2

←−
h d

2

−→
h d

3

←−
h d

3

−→
h d

T

←−
h d

T

• • •

• • •

µx1
bx1

µx2
bx2

µx3
bx3

µxT
bxT

−→
h
−→−→d

1

←−
h
←−←−d

1

−→
h
−→−→d

2

←−
h
←−←−d

2

−→
h
−→−→d

3

←−
h
←−←−d

3

−→
h
−→−→d

T

←−
h
←−←−d

T

• • •

• • •

Decoder
Bi-LSTM

−→
h
−→−→e

1

←−
h
←−←−e

1

−→
h
−→−→e

2

←−
h
←−←−e

2

−→
h
−→−→e

3

←−
h
←−←−e

3

−→
h
−→−→e

T

←−
h
←−←−e

T

• • •

• • •

µz

σz

z

z ∼ Normal(

Variational Layer

µx1
bx1

µx2
bx2

µx3
bx3

µxT
bxTReconstruction xt ∼ Laplace(µxt

, bxt)

cdet1 cdet2 cdet3 cdetT

Variational
Self-Attention

Network

+n +n +n +n

a11 a12
a13
a1T

Linear

SoftPlus

µc1 Σc1 µc2 Σc2 µc3 Σc3 µcT ΣcT

c1 c2 c3 cT

cdet1 cdet2 cdet3 cdetT

a11 a12
aa1313
a1T

µc1 Σc1 µc2 Σc2 µc3 Σc3 µcT ΣcT

c1 c2 c3 cT ct ∼ Normal(µct ,Σct)

n ∼ Normal(0,σ2
nI)

Corruption
x̃ = x + n

Fig. 1. Variational Bi-LSTM Autoencoder with Variational Self-Attention.

B. Anomaly Detection

The anomaly detection strategy is based on the following
principle. The Variational Bi-LSTM Autoencoder with Atten-
tion is trained on normal sequences, so that it learns the normal
pattern of data. At test time, normal sequences are expected to
be well reconstructed whereas anomalous ones are not, since
the model has not seen anomalous data during training.

Unlike deterministic autoencoders, the proposed model
based on a VAE reconstructs the distribution parameters (mean
µx and diversity bx) of the input variable rather than the
input variable itself. Therefore, it is possible to use probability
measures as anomaly scores. One approach is to compute the
reconstruction probability, introduced by An and Cho [18],
that is an estimation of the reconstruction term of the VAE
loss function by Monte Carlo integration.

Ez∼qφ(z|x) [log p(x|z)] ≈
1

L

L∑
l=1

log p(x|zl)

The process can be described as follows. First, an input
sequence x is propagated through the encoder and the posterior
parameters µz and Σz are obtained in a fully deterministic
fashion. Then, L samples are drawn from an isotropic Gaus-
sian distribution with these parameters. Each sample zl is

propagated though the decoder that outputs the distribution pa-
rameters of the reconstruction. Afterwards, the log-likelihood
of the input sample x, given a latent code zl drawn from
the approximate posterior distribution is computed. Finally,
the reconstruction probability is averaged over all z samples.
Algorithm 1 summarizes the computation process.

Algorithm 1 Reconstruction Probability Score
Input: x ∈ RT×dx
Output: ReconstructionProbability ∈ RT
(µz,Σz)← Encoder(x)
for l = 1 to L do

zl ∼ Normal(µz,Σz)
(µlx,b

l
x)← Decoder(zl)

scorel ← log p(x|µlx,blx)
end for
ReconstructionProbability ← 1

L

∑L
l=1 score

l

return ReconstructionProbability

The anomaly score itself is the negative reconstruction prob-
ability, so that the lower the reconstruction probability, the
higher the anomaly score. There are several advantages of
using the reconstruction probability instead of a deterministic
reconstruction error which is commonly used in autoencoder-
based anomaly detection approaches. The first one is that
the reconstruction probability does not requires data-specific
detection thresholds, since it is a probabilistic measure. Using
such a metric provides a more intuitive way of analysing the
results. The second one is that the reconstruction probability
takes into account the variability of the data. Intuitively,
anomalous data has higher variance than normal data and,
hence, the reconstruction probability is likely to be lower for
anomalous examples. The idea of using the variability of data
for anomaly detection enriches the expressive power of the
proposed model relatively to conventional autoencoders. Even
in the case where normal and anomalous data can share the
same expected value, the variability is different and, thus,
provide an extra tool to distinguish anomalous examples from
normal ones. For comparison purposes we also compute a
(stochastic) reconstruction error (RE), given by equation 10.

REz∼qφ(z|x)(x) =
1

L

L∑
l=1

∥∥∥x− E
[
pθ (xl|zl)

]︸ ︷︷ ︸
µxl

∥∥∥
1

(10)

V. TRAINING FRAMEWORK

A. Data

The energy data in this work is a dataset X of univariate
time series (dx = 1) of solar photovoltaic (PV) energy
generation from several residential installations. The training
data was obtained by selecting a subset X normal of 1430 daily
sequences with normal pattern (days without clouds and any
kind of anomaly, where the energy generated is as expected).
Samples were recorded each 15 min and, therefore, each
(daily) sequence as 96 observations. The solar PV curves have
a strong seasonality, with a predominant seasonal period of a

day. We divided our dataset of normal sequences into two
subsets - a training set X normal

train and a validation set X normal
val

- with a splitting ratio of 80/20, respectively. The data was
also normalised to the installed capacity, so that the range of
observed values lies in the interval [0, 1].

B. Modes

The proposed approach for anomaly detection can work
under the following two modes:

• Off-line Mode: Training is performed with non-
overlapping sequences of length T and the observations
within a sequence share a unique representation in the
latent space z. All the scores for an input window are
considered for detection and the score at a particular
timestep t in a window can depend on future observations
within the same window.

• On-line Mode: Training is executed using overlapping
sequences obtained with a sliding window with a width T
and a step size of 1. At test time, detection is performed
without considering observations of future time instants,
by feeding to the model a window of observations in
which the last point corresponds to the current timestep
t. The anomaly score at timestep t corresponds to the
score of the last observation within each sequence. In
this mode, for a long sequence with length L, L−T +1
windows are produced, each one of them having its
own representation in the z-space. Since these windows
overlap, the latent space will exhibit trajectories over
time.

C. Optimization and Regularization

The models were implemented using the Keras deep learn-
ing library for Python [24], running on top of TensorFlow [25].
Optimization was performed using AMS-Grad optimizer [26],
a variant of Adam [27], in mini-batches of size 200 (off-
line mode) and 10000 (on-line mode), during 1500 epochs.
The learning rate was 0.001. The full model has 274.958
parameters to optimize. We set the latent space dimensionality
(dz) and the context vectors dimensionality (dct) to 3. The
encoder and decoder Bi-LSTM both have 256 units, 128 in
each direction. The noise added at the input level for the
denoising autoencoding criterion has variance σ2

n = 0.1σ2
x. We

set the number L of Monte Carlo samples to 1 during training,
following the work of Kingma and Welling [5]. The gradients
were clipped by value with a clip value of 1.0. To prevent the
KL-divergence vanishing problem, we applied a KL-annealing
scheme [28] that consists on varying the weight λKL during
training. By doing so, λKL is initially close to zero in order to
allow accurate reconstructions in the early stages of training
and is gradually increased to promote smooth encodings and
diversity. The parameter η is 0.01. We also apply a sparsity
regularizer in the hidden layer of the encoder Bi-LSTM [29],
that penalizes the `1-norm of the activations with a weight of
10−8.
Training was done on a single NVIDIA GTX 1080 TI GPU

with 11GB of memory, in a machine with an 8th generation
i7 processor and 16GB of DDR4 RAM.

VI. EXPERIMENTS AND RESULTS

In this section, we present the results of the experiments ob-
tained with our proposed model. To illustrate the effectiveness
of our approach, a few examples of solar energy generation
curves representative of different patterns and behaviours
(Xtest) were annotated, such as a normal sequence used as
ground truth, a brief shading, a fault, a spike anomaly, an
example of a daily curve where snow covered the surface of
the PV panel and a sequence corresponding to a cloudy day.

We evaluate the training results using the training and
validation losses, presented in Table I.

TABLE I
TRAINING AND VALIDATION LOSSES.

Set Training
(
Xnormal

train

)
Validation

(
Xnormal

val

)
Loss −3.1457 −3.1169

The training and validation losses are similar, meaning that
the model is not over-fitting to the training data and is being
able to generalize to unseen (normal) sequences.

A. Anomaly Scores

Figure 2 shows some examples of solar PV generation daily
curves with different kinds of patterns and the corresponding
anomaly scores: the reconstruction probability (top bar) and
the reconstruction error (bottom bar), both obtained by Monte
Carlo integration using L = 512 samples.

0.0

0.5

1.0

E
n
er
gy

Ground Truth Brief Shading

0

1

E
n
er
gy

Inverter Fault Spike

0.0

0.5

1.0

E
n
er
g
y

Snow Cloudy Day

Fig. 2. Anomaly scores for some representative sequences (off-line mode,
non-overlapping sequences with T = 96 timesteps).

B. Latent Space Analysis

The experiments were performed using a 3-dimensional
latent space (dz = 3). For visualization purposes, we reduced
the dimensionality of the latent space to 2D using Princi-
pal Component Analysis (PCA) and t-distributed Stochastic

Neighbour Embedding (t-SNE) [30]. Figure 3 represents the
latent space z of the training set containing only normal
sequences (X normal

train). The label corresponds to the time instant
of the last observation within each sequence.

Fig. 3. Latent space visualization of Xnormal
train in 2D via t-SNE (left) and

PCA (right). (on-line mode, training executed using overlapping sequences
with T = 32 timesteps).

The latent space shows evidence that the model is mapping
sequences aligned in time onto the same region of the z-space
and, more interestingly, it reveals a cyclic trajectory whose
period matches exactly the seasonal period of the solar PV
curves: one day. In other words, the model has learned the
seasonal property of the data without being told of it and using
training sequences with a length 32 < 96, shuffled during
training. Previous works have shown latent spaces with this
behaviour, even though without analysing it, until the recent
work of Xu et al. [20] that provided for the first time an
explanation for this effect that they called Time Gradient.

In the context of time series anomaly detection, it is
interesting to exploit the latent representations to find out how
the representations of anomalous data compare with the ones
of normal examples. Figure 4 shows the representations of the
sequences that we annotated. Since the variational latent space
is obtained by sampling from the approximate posterior, in this
plot we represent the mean µz = E

[
qφ(z|x)

]
space, which is

deterministically obtained from the encoder Bi-LSTM output.

Cloudy Day

Snow

Spike

Inverter Fault

Brief Shading

Normal

Fig. 4. Latent space visualization of Xtest in 2D via PCA (on-line mode,
training executed using overlapping sequences with T = 32 timesteps).

Figure 4 shows structured and expressive representations of
sequences with various patterns. The normal examples (green)
and the anomalous ones are represented differently in the
space and there is clear a deviation of anomalous windows
from the normal trajectory. The normal data have also slightly
different trajectories in the space mainly because even though
the curves have the same qualitative (normal) pattern, they are
shifted in time due to different locations of the installations
where the sun starts shining on the PV panel at different
moments and also due to different inclinations.

C. Attention Visualization

The Variational Self-Attention Mechanism learns to pay
more attention to particular encoded hidden states. Therefore,
the attention model produces a 2D map for each sequence,
with length T , that shows where the network is putting its
attention. Figure 5 shows the attention maps for different test
sequences with and without anomalies.

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp
u
t
T
im

es
te
p
[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp
u
t
T
im

es
te
p
[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp
u
t
T
im

es
te
p
[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp
u
t
T
im

es
te
p
[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp
u
t
T
im

es
te
p
[h
]

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er
gy

0 4 8 12 16 20 24

Input Timestep [h]

0

4

8

12

16

20

24

O
u
tp
u
t
T
im

es
te
p
[h
]

10−3 10−2 10−1 100
Attention Weights

0 4 8 12 16 20 24

Time [h]

0.0

0.2

0.4

0.6

0.8

E
n
er
gy

Fig. 5. Attention maps for sequences with different patterns. The attention
weights are represented in a logarithmic scale.

The attention maps show evidence that the self-attention
model is producing context-aware representations, which can
be seen by the distribution of the attention weights in a small
window around the first diagonal of the maps. This result
supports the intuition that most of the temporal context of an
observation in a time series lies in a narrow window around it.
Furthermore, for different anomalies, the maps show different

distributions of the attention weights. In some cases, the self-
attention model is capturing dependencies between hidden
states far in time. This conclusion validates the proposed
reconstruction-based anomaly detection approach, since it tells
that the network struggles to reconstruct well anomalous
sequences while it tries to capture long-term dependencies in
those.

It is also possible to visualize the context vectors cdett in
the mean space µct . The visualization, shown in Figure 6,
was performed by reducing the dimensionality of µct to 2D
using PCA. The labels represent the corresponding time instant
t. Each context vector is computed as a weighted sum of
all the encoder hidden states, so each one of them combines
information from different time instants.

Fig. 6. Context vectors of the validation set Xnormal
val .

Figure 6 shows that context vectors aligned in time tend
to be roughly represented in the same region of the space,
while the mixed structure suggests that different sequences
lead to context vectors that combine the encoder hidden states
differently, using different attention weights.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a generic, unsupervised and
scalable framework for anomaly detection in time series data
that can operate both off-line and on-line. Our approach
consists of a reconstruction model based on a variational
autoencoder. We parametrized the encoder and decoder with
recurrent neural networks to take into account the temporal de-
pendencies of time series data. We also proposed a variational
self-attention mechanism that aids the decoding process by
allowing the model to pay more attention to particular encoded
hidden states and, at the same time, provides a straightforward
visualization scheme for the sequences.

Our results show that the model is able to detect anomalous
patterns by using the probabilistic reconstruction metrics as
anomaly scores. Moreover, the attention maps show evidence
that the model changes its attention according to the kind
of pattern of the input sequence. In particular, it attends
differently depending on whether the sequence is normal or
anomalous. A future line of work can exploit the usefulness
of the attention maps for detection.

Furthermore, even though we applied the proposed model
to solar PV generation univariate time series, it is suitable to

multivariate data as well, in which x can be a dx-dimensional
vector of observations. Moreover, it can even be applied to
other types of sequential data beyond time series, such as text
and videos.

One of the major challenges of this work was the full
absence of labels that is, actually, a common scenario in
the context of real-world applications, such as energy. This
motivated the unsupervised framework for anomaly detection
that we proposed. The main advantage of following such an
approach is that it can be applied to a wide range of time
series data available. On the other hand, the main difficulty
that we found due to the lack of labels was evaluation,
since it is not possible to compute conventional classification
metrics under this scenario. In fact, evaluation metrics for
unsupervised anomaly detection algorithms, in the absence of
labels and ground truth, remains a challenging problem where
the literature is still scarce, even though some recent work has
been done on the subject [31].

In this work, we focused on assigning an anomaly score
to every observation in a sequence and not discriminating
between different anomalies. However, the proposed approach
can be extended to a multi-class framework, to allow distin-
guishing between anomalies. For this purpose, the detection
phase might take into account the representations learned in
the z-space, which reveal to be expressive enough to allow for
such a scenario.

Finally, in unsupervised anomaly detection, the concept of
normality turns out to be hard to define in formal terms and
might be prone to change/drift over time. Dealing with concept
drift is a subject that we intend to address in future work.

ACKNOWLEDGEMENT

This work was funded by FCT project UID/EEA/50009/2013.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Repre-
sentations by Back-propagating Errors,” Nature, vol. 323, pp. 533–536,
1986.

[3] H. Bourlard and Y. Kamp, “Auto-association by Multilayer Perceptrons
and Singular Value Decomposition,” Biological Cybernetics, vol. 59,
no. 4, pp. 291–294, Sep 1988. [Online]. Available: https://doi.org/10.
1007/BF00332918

[4] G. Hinton and R. Salakhutdinov, “Reducing the Dimensionality of Data
with Neural Networks,” Science, vol. 313, no. 5786, pp. 504 – 507,
2006.

[5] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
CoRR, vol. abs/1312.6114, 2013. [Online]. Available: http://arxiv.org/
abs/1312.6114

[6] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic
Backpropagation and Approximate Inference in Deep Generative
Models,” in Proceedings of the 31st International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research,
E. P. Xing and T. Jebara, Eds., vol. 32, no. 2. Bejing, China:
PMLR, 22–24 Jun 2014, pp. 1278–1286. [Online]. Available:
http://proceedings.mlr.press/v32/rezende14.html

[7] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[8] A. Graves, “Generating Sequences With Recurrent Neural Networks,”
CoRR, vol. abs/1308.0850, 2013.

[9] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional LSTM
Networks for Improved Phoneme Classification and Recognition,” in
Proceedings of the 15th International Conference on Artificial Neural
Networks: Formal Models and Their Applications - Volume Part II, ser.
ICANN’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 799–804.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1986079.1986220

[10] I. Sutskever, Q. V. Le, and O. Vinyals, “Sequence to Sequence Learning
with Neural Networks,” CoRR, vol. abs/1409.3215, 2014.

[11] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” CoRR, vol. abs/1406.1078,
2014.

[12] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by
Jointly Learning to Align and Translate,” CoRR, vol. abs/1409.0473,
2014. [Online]. Available: http://arxiv.org/abs/1409.0473

[13] M. Luong, H. Pham, and C. D. Manning, “Effective Ap-
proaches to Attention-based Neural Machine Translation,” CoRR, vol.
abs/1508.04025, 2015.

[14] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long Short Term Mem-
ory Networks for Anomaly Detection in Time Series,” in Proceedings
of the 23rd European Symposium on Artificial Neural Networks, 2015.

[15] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and
G. Shroff, “LSTM-based Encoder-Decoder for Multi-sensor Anomaly
Detection,” CoRR, vol. abs/1607.00148, 2016.

[16] J. Bayer and C. Osendorfer, “Learning Stochastic Recurrent Networks,”
ArXiv e-prints, Nov. 2014.

[17] M. Sölch, J. Bayer, M. Ludersdorfer, and P. van der Smagt, “Variational
Inference for On-line Anomaly Detection in High-Dimensional Time
Series,” CoRR, vol. abs/1602.07109, 2016.

[18] J. An and S. Cho, “Variational Autoencoder based Anomaly Detection
using Reconstruction Probability,” CoRR, vol. 2015-2, 2015.

[19] D. Park, Y. Hoshi, and C. C. Kemp, “A Multimodal Anomaly Detector
for Robot-Assisted Feeding Using an LSTM-based Variational Autoen-
coder,” CoRR, vol. abs/1711.00614, 2017.

[20] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu,
Y. Zhao, D. Pei, Y. Feng, J. Chen, Z. Wang, and H. Qiao,
“Unsupervised Anomaly Detection via Variational Auto-Encoder for
Seasonal KPIs in Web Applications,” CoRR, 2018. [Online]. Available:
http://arxiv.org/abs/1802.03903

[21] Y. Bengio, D. J. Im, S. Ahn, and R. Memisevic, “Denoising Criterion
for Variational Auto-Encoding Framework,” CoRR, vol. abs/1511.06406,
2015.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention Is All You Need,” CoRR, vol.
abs/1706.03762, 2017.

[23] H. Bahuleyan, L. Mou, O. Vechtomova, and P. Poupart, “Variational At-
tention for Sequence-to-Sequence Models,” CoRR, vol. abs/1712.08207,
2017.

[24] F. Chollet, “Keras,” https://keras.io, 2015.
[25] M. Abadi et al., “ TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems,” 2015, software available from tensorflow.org.
[Online]. Available: https://www.tensorflow.org/

[26] S. J. Reddi, S. Kale, and S. Kumar, “On the Convergence of Adam and
Beyond,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=ryQu7f-RZ

[27] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[28] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and
S. Bengio, “Generating Sentences from a Continuous Space,” CoRR,
vol. abs/1511.06349, 2015.

[29] D. Arpit, Y. Zhou, H. Ngo, and V. Govindaraju, “Why Regularized
Auto-Encoders learn Sparse Representation?” in Proceedings of The
33rd International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, M. F. Balcan and K. Q. Weinberger, Eds.,
vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 136–
144. [Online]. Available: http://proceedings.mlr.press/v48/arpita16.html

[30] L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.
[Online]. Available: http://www.jmlr.org/papers/v9/vandermaaten08a.
html

[31] N. Goix, “How to Evaluate the Quality of Unsupervised Anomaly
Detection Algorithms?” ArXiv e-prints, 2016.

http://doi.acm.org/10.1145/1541880.1541882
https://doi.org/10.1007/BF00332918
https://doi.org/10.1007/BF00332918
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://proceedings.mlr.press/v32/rezende14.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=1986079.1986220
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1802.03903
https://keras.io
https://www.tensorflow.org/
https://openreview.net/forum?id=ryQu7f-RZ
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v48/arpita16.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html
http://www.jmlr.org/papers/v9/vandermaaten08a.html

