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Anomaly detection is about finding patterns in data that do not
conform to expected or normal behaviour.
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Main Challenges

» Most data in the world are unlabelled
+—— anomaly labels

Dataset D = {(X(i)’ y*(”) } -

» Annotating large datasets is difficult, time-consuming and
expensive

» Time series have temporal structure/dependencies

X = (Xl,XQ, ...,XT) ; x; € R
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We would like:

» Unsupervised: no need for anomaly labels;

» Suitable for sequential data (e.g., time series);

» General;

» Scalable & efficient, allowing real-time detection.
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We would like:

» Unsupervised: no need for anomaly labels;

» Suitable for sequential data (e.g., time series);

» General;

» Scalable & efficient, allowing real-time detection.

How to design such a model?
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The Principle in a Nutshell

» Train a Variational Autoencoder!? to reconstruct input data
with mostly normal patterns;

Variational Latent Space .

/ Mx

Input
2=, t e,
€ ~ Normal(0,I)
S S
Encoder Decoder
94(z]x) po(x]z)

» At test time, it reconstructs well normal data, while it fails to
reconstruct anomalous data;

» The quality of the reconstructions and the representations are
used to compute anomaly scores.

1Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14

2Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14
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Representation Learning
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Representation Learning
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Representation Learning

Denoising Autoencoding Criterion

Corruption process: additive Gaussian noise

p(X[x) =x+n , 1~ Normal(0,02I) u

Vincent el al., Extracting and Composing Robust Features with Denoising Autoencoders, ICML'08

Bengio el al., Denoising Criterion for Variational Auto-Encoding Framework, ICLR'15

comin [ H H

Input sequence X1 X2 X3 X7
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Representation Learning

Learning temporal dependencies

Bidirectional Long-Short Term Memory network

hy = [ﬁﬁ tt]

» 256 units, 128 in each direction
» Sparse regularization, Q(z) = A Z;iil |

Hochreiter e/ al., Long-Short Term Memory, Neural Computation'97

Graves el al., Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition, ICANN'05
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Representation Learning

Variational Latent Space

Variational parameters derived using neural networks

(pz, 02) = Encoder(x)
Sample from the approximate posterior q4(z|x)

Z=py+0,0€ €~ Normal(0,I)

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR, 2014
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Representation Learning

Introducing Variational Self-Attention

A combination of self-attention and variational inference.

T
= Zatjhj (tey, o7¢,) = NN(cfY),  ¢; ~ Normal(pae,, o%tI)

Vaswani et al., Attention is All You Need, NIPS'17

C3 cr

NN AN A

He, Oc; HPe, Ocy ey Ocy Heop Ocy
Variational
Self-Attention \_/ \_f u \ /
Mechanism
et et et it
- = - -,
B R ) Linear
Encoder
BLLSTM = (= [=—=| |[=— -
YR Y St (B TP BN =
E— E— E— E—
Input sequence X1 X2 X3 X7

Joao Pereira November 22, 2018



Representation Learning
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Representation Learning

Reconstruction

Py by P, by, fxy by Bxy be

Reconstruction parameters:
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Representation Learning
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£(0,6:x™) = ~Ey g, (ahx™), ermit(erx™) [IOg po(x"z.c) ]

+ )\KL

T
Dict, (ao(2lx") lpa(2)) + 1> D, (qg(cdx("))”po(ct))]

t=1

D1, denotes the Kullback-Leibler Divergence
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Reconstruction Term

A

Ve

L8, 6:x™) = ~E g, (i), cpmi(ed) | 10870 (x"2,0)]

T
+ M. | D (3(2/x ) [po(2)) + 1 Picr. (@5(celx™) [pu(er) ) ]
t=1
Latent Sp:lrce KL loss Attenti(:nr KL loss

Dx1, denotes the Kullback-Leibler Divergence
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Training Framework

Optimization & Regularization

>

vVvYyyvyy

>

About 270k parameters to optimize
AMS-Grad optimizer?

Xavier weight initialization*
Denoising autoencoding criterion®

Sparse regularization in the encoder Bi-LSTM®
KL cost annealing’

Gradient clipping®

Training executed on a single GPU (NVIDIA GTX 1080 TI)

3Reddi, Kale & Kumar, On the Convergence of Adam and Beyond, ICLR'18
4Bengio et al., Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS 10

5Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, AAAI'17

6Arpit et al., Why Regularized Auto-Encoders Learn Sparse Representation?, ICML'16

7Bowman, Vinyals et al., Generating Sentences from a Continuous Space, SIGNLL'16

8Bengio et al., On the Difficulty of Training Recurrent Neural Networks, ICML'13
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One model, two detection strategies

The model provides two products: representations in the z-space
and the reconstruction parameters in the x-space

R
Input
Sequence x Encoder Decoder OUtP“tT

X = (X1,Xa, ..., X7)
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One model, two detection strategies

The model provides two products: representations in the z-space
and the reconstruction parameters in the x-space

R R
Input
Sequence X (it Z Decoder OutputT
qo(2[x) po(x|z) (I‘erbx/),,l

X = (X1,X2, ..., X7)

1 1

Representations Reconstructions

» Reconstruction-based detection

» Latent space-based detection
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Reconstruction-based Detection

Reconstruction Error = E, ¢, (zx) [”x — Elpo(x|2;)] ||1}

Reconstruction Probability = E,, g, (z/x) [log p(x|zl)}

4p(2[x)

z; ~ Normal(p,, o21)
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Latent Space Detection

Based on the representations in the z-space.

» Wasserstein Metric (V)

06(2 ) gy (2|
o . .

» Clustering

score(z"") = median{W (2", z’)Q}f\iY
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Time Series Data

Solar PV Generation

Electrocardiogram

0.75 9 .
2 .25+ §‘2~5
0.00L; . 501 : .
0 96 192 288 384 0 140 280 420 560
Samples Samples
> Provided by > Available in the UCR Time
c|side Series Classification Archive
» Recorded every 15min ECG5000 [Keogh et al., 2015]
(96 samples/day) » One heartbeat ~ 140 samples

» Daily seasonality » 5000 sequences

» Unlabelled
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» Labelled, 5 classes annotated
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Attention Map
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Dataset

ECG5000
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ate pace ECG5000

Each datapoint — a sequence of length T’ T = 140 (one heartbeat)
Oy =5

t-SNE

R-on-T
Normal PVC PVC SPor EB UB
Class Labels
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Re ECG5000

Metric Hierarchical Spectral k-Means++ Wasserstein SVM

AUC 0.9569 0.9591 0.9591 0.9819 0.9836

Accuracy 0.9554 0.9581 0.9596 0.9510 0.9843

Precision 0.9585 0.9470 0.9544 0.9469 0.9847

Recall 0.9463 0.9516 0.9538 0.9465 0.9843

F-score 0.9465 0.9474 0.9522 0.9461 0.9844
Source [s/u] Model | Auc | Acc [ R ]

S VRAE-+SVM 0.9836 | 0.9843 | 0.9844

Proposed

U | VRAE+Clust/W | 0.9819 | 0.9596 | 0.9522
Lei et al., 2017 S SPIRAL-XGB 0.9100 - -
Karim et al., 2017 S | F-t ALSTM-FCN - 0.9496 -
Malhotra et al., 2017 S SAE-C - 0.9340 -
Liu et al., 2018 U oFCMdd - - 0.8084
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Re ECG5000

Unsupervised Supervised
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Re ECG5000

Unsupervised Supervised
AUC 0.9569 0.9501 0.9501 0.9819 0.9836
Accuracy 0.9554 0.9581 0.9596 0.9510 0.9843
Precision 0.9585 0.9470 0.9544 0.9469 0.9847
Recall 0.9463 0.9516 0.9538 0.9465 0.9843
Fy-score 0.9465 0.9474 0.9522 0.9461 0.9844
Source [s/u] Model | Auc | Acc [ R ]
VRAE+SVM | 0.9836 | 0.9843 | 0.9844
Proposed
VRAE-+Clust/W | 0.9819 | 0.9596 | 0.9522
Lei et al., 2017 SPIRAL-XGB | 0.9100 - -
Karim et al., 2017 F-t ALSTM-FCN - 0.9496 -
Malhotra et al., 2017 SAE-C - 0.9340 -
Liu et al, 2018 oFCMdd - - 0.8084
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Conclusions & Future Work

The proposed approach is:
» Effective on detecting anomalies in time series data;
» Suitable for both univariate and multivariate data;
» Efficient: inference and anomaly scores computation is fast;
» Works with other kinds of sequential data (e.g., text, videos);

» Extensible to a multi-class framework that allows
discrimination between anomalies.
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The Variational Autoencoder

» Deep generative model rooted in Bayesian inference

Variational Latent Spdce Encoder
/ a(z/x)
X—space Z—space
Input Réx
@ Prior
Z = L, + €0,
€~ N»nnal(() T
Encoder Decoder Decoder
45(2/%) polx]z) v

po(zlx) = 6 (z)po (x|2)

= [, po(2)po(x|z)dz ED

> Objective: Maximize the Evidence Lower Bound (ELBO)
log pp(x) > By, (z1x) [ log po(x|2)] — Dk (g (2%)|ps(2))

=LgLBO0(0,0; X)

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14
Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14
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Derivation of the Evidence Lower Bound (ELBO)

Ingg(x) = ]Eq¢(z|x) Inge(x)]

[
R [lo Pe(xlz)Pe(z)]

0‘3

po (z[x)
log

po (x|2)po (2) q¢(z|x>}

=E
a0 (=1x) po(zlx)  qq(zx)

4o (alx) 44 (2x)
=E 1 —Egyzi [1og ——| +Eqy(zx) | ]
q¢(z|x)[ og po (x|z)] qg (2 )[ og po(z) T Bay (a0 | log po(z]x)

= Eq,, (a0 [ log po (x]2)] — Dkr (46 (2]x)[[pe(2)) + Dxr (a0 (2]%)[|po (2]x))

=LpLBO (0,¢:%) =0
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Recurrent Neural Networks

What if data are not i.i.d. in time?
(e.g., time series, text, videos)

RNNs capture the temporal dependencies of the data
» Real-valued hidden state h;
» Feedback connection

» Parameters shared across timesteps

Output Sequence Vi1 i Vi1

ht = f(UXt + Wht_l)

Hidden States - - -

f is typically a tanh or sigmoid

Tnput Sequence
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Long Short-Term Memory Network

Previous
Hidden State

» Proposed to solve the
vanishing gradient problem

Previous
Memory Cell

» New cell and three gates

» Updates:

i = O'(Wiht_l + U;x; + bz)
f; = O'(tht—l + Uth -+ bf)
o, =0(Wohy_1 + Uyx; + by)
¢ =f ®c1 +1i; ©tanh(Wehy—1 + Uexy + be)
h; = o; ® tanh(c;)

Hochreiter el al., Long-Short Term Memory, Neural Computation'97
Graves e/ al., Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition, ICANN’05
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Sequence to Sequence (Seq2Seq) models

Map sequences to sequences is useful.

Output Learned Representation yioy2 ys
e H H H |:|_>|i_|‘|f|‘|f|‘
Input X1 XQ Xg XTx

Sutskever el al., Sequence to Sequence Learning with Neural Networks, NIPS'14

Cho el al., Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation, NIPS'14
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Classification Metrics

Accuracy = TP+InN
TP+ FP+FN+4+TN ——
Precision = —TP U
TP+ FP e ° o
TP
Recall = TP+ FN
F, —score = Precision * Recall
Precision + Recall
Legend: selected demencs
TP : True Positives e
TN : True Negatives precisw: —

F'P : False Positives
F'N : False Negatives
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Classificati _

AUC: Area under the Receiver Operating Characteristic Curve
(average precision over recalls)

-

TP Rate

0 FP Rate 1
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