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Abstract: While the big data revolution takes place, large amounts of electronic
health records, such as electrocardiograms (ECGs) and vital signs data, have
become available. These signals are often recorded as time series of observations
and are now easier to obtain. In particular, with the arise of smart devices that can
perform ECG, there is the quest for developing novel approaches that allow to
monitor these signals efficiently, and quickly detect anomalies. However, since
most data generated remains unlabelled, the task of anomaly detection is still very
challenging.
Unsupervised representation learning using deep generative models (e.g.,
variational autoencoders) has been used to learn expressive feature representations
of sequences that can make downstream tasks, such as anomaly detection, easier
to execute and more accurate.
We propose an approach for unsupervised representation learning of ECG
sequences using a variational autoencoder parameterised by recurrent neural
networks, and use the learned representations for anomaly detection using
multiple detection strategies. We tested our approach on the ECG5000
electrocardiogram dataset of the UCR time series classification archive. Our
results show that the proposed approach is able to learn expressive representations
of ECG sequences, and to detect anomalies with scores that outperform other
both supervised and unsupervised methods.

Keywords: deep learning; representation learning; data mining; bioinformatics;
variational autoencoders; recurrent neural networks; time series; anomaly
detection; clustering; healthcare; electrocardiogram; unsupervised learning.

Reference to this paper should be made as follows: Pereira, J. and Silveira, M.
(2019) ’Unsupervised Representation Learning and Anomaly Detection in ECG
Sequences’, International Journal of Data Mining and Bioinformatics, Vol. x,
No. x, pp.xxx–xxx.

Biographical notes: João Pereira received the M.Sc. degree in Electrical and
Computer Engineering from Instituto Superior Técnico, University of Lisbon,

Copyright © 201X Inderscience Enterprises Ltd.

mailto:joao.p.cardoso.pereira@tecnico.ulisboa.pt
mailto:msilveira@isr.tecnico.ulisboa.pt


2 Pereira et al.

Lisbon, Portugal, in 2018. His research interests are in the area of machine
learning, with focus on deep learning. He has been working on deep learning
applications in the fields of healthcare and energy, and in problems such as
representation learning, time series modelling, and anomaly detection.

Margarida Silveira received the E.E. and Ph.D. degrees from the Technical
University of Lisbon, Lisbon, Portugal, in 1994 and 2004, respectively. Currently,
she is an Assistant Professor with the Electrical Engineering Department, Instituto
Superior Técnico, Lisbon, Portugal, and a Researcher at the Institute for Systems
and Robotics. Her research interests are in the areas of image processing, computer
vision, and pattern recognition.

1 Introduction

In deep learning, learning good feature representations for the downstream problem to be
solved is often of great importance (Bengio et al., 2012). By doing so, one can find simpler,
useful, and expressive, representations that can make the target task easier to perform.
Finding these representations often requires highly complex and non-linear mappings
between the original space of the inputs and the representations space. The success of neural
network models has been strongly motivated by their ability to perform these complex
mappings.

One such downstream task that has been growing its importance and motivating a
significant amount of work over the past few years is anomaly detection (AD). The objective
is to find data points that deviate from the majority of the data or, in other words, that
do not follow the normal behaviour of the data. While many approaches for detecting
anomalies in the most various types of data have been proposed over time (Chandola et al.,
2009; Pimentel et al., 2014), in application domains such as healthcare, energy, finance,
robotics, and security, this problem still remains very challenging, both for researchers and
practitioners. The challenges arise from the difficulty of obtaining large labelled datasets
that are required to train traditional supervised machine learning models.
Motivated by the lack of labels in the context of applications, there has been in recent years
strong efforts on improving unsupervised learning (LeCun et al., 2015). The introduction
of novel deep generative models, such as variational autoencoders (VAEs) (Kingma
and Welling, 2013; Rezende et al., 2014) and generative adversarial networks (GANs)
(Goodfellow et al., 2014), has established a new promising paradigm, specially in the context
of representation learning.
In the broad healthcare domain, electrocardiograms (ECGs) are important sequences to be
analysed. The collection of these signals is nowadays ubiquitous and easier to perform,
with the arise of wearable devices such as smart watches that have the ability of executing
one-lead ECG anywhere and anytime. Therefore, with the increase of users, monitoring and
classifying these signals is becoming more and more important.

We propose an approach for unsupervised representation learning of ECG sequences,
and use the learned representations for the task of anomaly detection. In particular, we
train a variational autoencoder model parameterised with recurrent neural networks to first
learn the representations of ECG sequences and, then, perform detection in the learned
latent space using unsupervised and supervised methods, including clustering, Wasserstein
similarity (Villani, 2009), and support vector machines.
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We first provide background on variational autoencoders and recurrent neural networks.
Then, we review related work on representation learning and anomaly detection in time
series data (e.g., ECG). Finally, we present our approach for both tasks and evaluate them
on a publicly available ECG dataset.

2 Background

In this section, we provide background on variational autoencoders and recurrent neural
networks (LSTM and Bi-LSTMs).

2.1 Variational Autoencoders

Autoencoders (Rumelhart et al., 1986; Bourlard and Kamp, 1988) are unsupervised learning
models that are trained to reconstruct their input. They consist of two components, an
encoder and a decoder. The encoder maps input data x ∈ Rdx into a latent representation
z ∈ Rdz and the decoder takes the latent representation and maps back to input space.
The variational autoencoder (Kingma and Welling, 2013; Rezende et al., 2014) is a
deep generative model that introduces a probabilistic framework for the conventional
autoencoder. The VAE assumes that the latent code z is a random variable distributed
according to a prior distribution pθ (z), which is often defined as a standard Normal
distribution, N (0, I). A sampling process takes place on this prior from which samples of
latent codes z are drawn. Afterwards, a decoder network pθ(x|z), which is a generator model
defined by a neural network with parameters θ, outputs a data point x in the original input
space. However, the true posterior p(z|x) required during maximum likelihood training is
generally difficult to compute for a continuous latent space. Instead, the VAE leverages the
variational inference technique to find an approximation qφ(z|x) of the true, but intractable,
posterior. The approximate posterior is defined by an encoder neural network, also referred
to as recognition network, with parameters φ, that generates distributions over latent codes.
Typically the code distribution is modelled as a multivariate NormalN (µz,Σz), for which
the encoder network outputs the corresponding mean and variance.
Figure 1 shows an illustration of a VAE from a graphical model perspective.
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Figure 1 Representation of the VAE as a (directed) graphical model.

The encoder and decoder networks are jointly trained to maximise an evidence lower bound
(ELBO) on the log-likelihood of the data, as given by equation 1.

LELBO(θ, φ;x) = Eqφ(z|x)
[
log pθ(x|z)

]
−DKL

(
qφ(z|x)‖pθ(z)

)
(1)

where φ and θ are the encoder and decoder parameters, respectively. The first term can be
seen as a reconstruction term that promotes good reconstructions, whereas the second term
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acts as a regularisation penalty on the latent representation z. The later KL divergence term
expresses the amount of information that the code z contains about the input data point x.
The decoding distribution is typically a multivariate Normal or Bernoulli, according to the
type of data being real-valued or binary, respectively.

2.2 Recurrent Neural Networks

The conventional feed-forward neural networks assume data is independent and identically
distributed in time and, hence, they are not specially designed for sequences, such as time
series. In order to better model sequences of inputs, recurrent neural networks (RNNs)
were proposed. A RNN takes as input a sequence x = (x1,x2, ...,xT ) and produces every
timestep t a hidden state ht. A feedback connection is established across timesteps, so
that the network keeps an internal memory about the inputs. One of the simplest RNN
architectures is the vanilla RNN, in which the hidden states are updated in function of the
current input and the hidden state at the previous timestep, according to Equation 2.

ht = f(Uxt + Wht−1) (2)

where the function f is typically a tanh or sigmoid and U and W are the weights matrices,
shared across timesteps. The hidden states ht of a RNN can be interpreted as a vector
representation of the sequence of inputs read up to timestep t. While RNNs are more suited
for sequential data, their training process is affected by the vanishing gradient problem,
which appears specially in sequences with long-term dependencies. In order to tackle this
issue, long short-term memory (LSTM) networks (Hochreiter and Schmidhuber, 1997;
Graves, 2013), illustrated in Figure 3, were proposed. They have a memory cell and three
gates that: control the proportion of the current input to include in the memory cell, the
proportion of the previous memory cell to forget, and the information to output from the
current memory cell. The computations in a LSTM can be summarised by the following set
of equations:
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it = σ(Wiht−1 + Uixt) (3)
ft = σ(Wfht−1 + Ufxt) (4)
ot = σ(Woht−1 + Uoxt) (5)

ct = ft � ct−1

+ it � tanh(Wcht−1 + Ucxt)
(6)

ht = ot � tanh(ct) (7)
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where it, ft, ot, ct and ht denote the input gate, the forget gate, the output gate, the memory
cell, and the hidden state. � represents an element-wise product. The other parameters are
weight matrices shared across timesteps.

In some applications, it is relevant to exploit the input sequence using both past and
future features for a specific timestep. Bidirectional long-short term memory networks (Bi-
LSTMs) (Graves et al., 2005) do so by training two LSTMs on the input sequence x. The
first LSTM processes the input sequence in the forward direction, while the second LSTM
executes a backward pass, producing the corresponding hidden states at each timestep.
Then, the resulting hidden state outputs from the forward LSTM,

−→
h t, and backward LSTM,←−

h t, are merged (e.g., concatenated) at every timestep in order to encode information from
past and future contexts, respectively, so that a global hidden state ht is obtained.

3 Related Work

The literature on anomaly detection in sequences (e.g., ECG) has been recently leveraging
the successes obtained with deep learning models, predominantly in the supervised
learning setting. In this framework, neural networks have been able to learn useful feature
representations of sequences automatically, which serve as a basis for further tasks,
such as anomaly detection. The architectures adopted are typically based on recurrent
neural networks or convolutional neural networks (CNNs) that can captures the temporal
dependencies of the data. In this context, Ng et al. (2017) used a deep convolutional neural
network with 34 layers to classify ECG time series. Chauhan and Vig (2015) applied
LSTMs for detecting anomalies in sequences and applied it to ECG data. Malhotra et al.
(2017) proposed a sequence autoencoder model (TimeNet) to extract sequence features
automatically, and use them for supervised classification. Other works leverage both neural
network architectures, such as Karim et al. (2017) that proposed a combination of RNNs
and CNNs for time series classification.
In what concerns unsupervised learning approaches, the literature is not so broad as for
supervised models. Nevertheless, since the introduction of new deep generative models (e.g.,
VAEs and GANs), which are unsupervised, there was a renewed interest in unsupervised
anomaly detection. An and Cho (2015) proposed a novel detection approach based on a
variational autoencoder and applied it to image data and Pereira and Silveira (2018) used a
VAE to detect anomalies in solar photovoltaic generation sequences. Li et al. (2018) applied
generative adversarial networks for anomaly detection in time series data.
Finally, even though the supervised setting continues to provide impressive results, the
efforts on the unsupervised side are quickly improving the results and reveal a promising
direction of work.

4 Proposed Approach

The proposed approach consists of two tasks. The first one is the task of unsupervised
feature representation learning and the second is the downstream task of anomaly detection,
for which we want to learn the representations. Unlike previous works, our approach is
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unsupervised in both of these steps.
Let X =

{
x(n)

}N
n=1

denote a dataset of N time series with length T and dimension dx:

x(n) =
(
x
(n)
1 ,x

(n)
2 , ...,x

(n)
T

)
4.1 Unsupervised feature learning by variational autoencoder

The model used for representation learning is based on a variational autoencoder with
an encoder/decoder parameterised by recurrent neural networks to tackle the sequential
structure of the data. The specific architecture can be described as follows:

4.1.1 Input layer

The input of the model is a time series x(n). A denoising criterion (Bengio et al., 2015) is,
then, applied in order to promote better generalisation of the model to unseen data points. In
this criterion, the input is corrupted with noise and the model has to learn how to reconstruct
the original clean input x from its noisy version x̃. In other words, noise with varianceσ2

n is
injected at the input level and noisy samples of x are drawn from a corruption distribution
p(x̃|x), in this work, a Normal distribution.
The implementation of the denoising criterion was simplified as in the work of Park et al.
(2017), by modelling the posterior distribution given a corruption distribution around x
with a single Normal, q̃φ(z|x) ≈ qφ(z|x̃).

x̃ ∼ p(x̃|x) (8)

p(x̃|x) = N (x|0,σ2
nI) (9)

4.1.2 Encoder network

The next layer of the model is the encoder, which plays the role of an inference network.
The encoder is parameterised by a bidirectional long short-term memory network, with
parameters φ. This Bi-LSTM reads in all the observations of the input time series x(n) and
generates a sequence of hidden states in both directions (from timestep 1 to T and vice
versa). The final hidden states produced in each direction, which are vector representations
of the whole sequence, are then concatenated into the vector he

T =
[−→

h e
T ;
←−
h e
T

]
.

We defined the prior on the latent variables, pθ(z), as an isotropic multivariate Normal
distribution, N (0, I). From the concatenated vector representation he

T are derived the
parameters of the variational approximate posterior qφ(z|x̃). For the approximate posterior
we adopted a multivariate Normal distribution, with diagonal co-variance structure for the
sake of simplicity. Therefore, the parameters derived are a mean µz and a variance σ2

z , by
means of two fully-connected layers with Linear and SoftPlus activation functions.
Afterwards, samples of latent codes are drawn from the variational approximate posterior,
using the re-parameterisation trick:

z ∼ qφ(z|x̃) (10)

z = µz + σz � ε (11)

where ε ∼ N (0, I) is an auxiliary variable and � means an element-wise product.
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4.1.3 Decoder network

The decoder network, which is a generative model of time series, is a Bi-LSTM with
tanh activation that takes as input a latent code sample from the approximate posterior
distribution. The outputs of this decoder are the reconstruction parameters for every
observation in the input sequence. The decoding distribution pθ(xt|z) is a multivariate
Normal with diagonal co-variance, N (µxt ,Σxt).

4.1.4 Loss function

The loss function of the proposed model is, then, given by equation 12.

L(θ, φ;x(n)) =− Eq̃φ(z(n)|x(n))

[
log pθ(x

(n)|z(n))
]

+ λKLDKL

(
q̃φ(z

(n)|x(n))‖pθ(z(n)
) (12)

Instead of adopting the classic variational lower bound objective of the VAE, we added a
parameter λKL that sets the trade-off between the quality of the reconstructions and the
simplicity of the representations.
The first term of the loss function is the expectation over the log-likelihood of a Normal
distribution, approximated by Monte Carlo integration. The log-likelihood of a time series
x(n) can be decomposed across timesteps according to equation 13.

log pθ
(
x(n)|z(n)

)
=

T∑
t=1

log pθ
(
x
(n)
t |z(n)

)
(13)

The second term in the loss is the KL-divergence (DKL) between the approximate posterior
and the prior on the latent codes. In the case of a Normal, this KL term can be computed
without estimation with the closed form given by equation 14.

DKL

(
qφ(z|x)‖pθ(z)

)
≈ 1

2

[
tr(Σz)− µTz µz − dz − log(|Σz|)

]
(14)

Figure 2 illustrates a representation of the proposed model.

4.2 Anomaly Detection

We are interested in detecting anomalies in ECG time series data by leveraging the expressive
power of the feature representations learned by the model described in section 4.1.
The philosophy behind autoencoder-based anomaly detection consists of training the model
on time series with mostly normal patterns, so that it learns a manifold of normal data in its
latent space. At test time, normal time series are likely to be mapped into a region of the
latent space distinct from the time series with anomalous patterns. These representations
in the latent space are, thus, useful feature vector representations for our downstream task.
Under this strategy, the final end objective of anomaly detection is to identify whether a
given representation in the latent space is normal or anomalous.
We propose three different strategies for detection. Motivated by the quest for unsupervised
approaches that are suited to applications where the lack of labels is a key constraint,
we propose two unsupervised detection methods. The third methodology is supervised
on the anomaly labels and is intended to be used as a baseline for evaluating the
unsupervised/supervised frameworks. These strategies are the following:
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Figure 2 Representation of the proposed model.

• Clustering

• Wasserstein similarity

• Support vector machine (SVM)

4.2.1 Clustering

The first methodology consists on performing clustering over the representations predictive
mean space

(
µz = E

[
qφ(z|x)

])
. The objective is to identify the two clusters that contain

the latent codes of normal and anomalous ECG heartbeats. This strategy assumes that the
majority of the heartbeats have normal pattern and, therefore, the anomalous heartbeats will
be projected differently in the latent space, with respect to the normal ones.
We consider three clustering algorithms: hierarchical clustering (Zhao et al., 2005), spectral
clustering (Ng et al., 2001) andk-means++ (Arthur and Vassilvitskii, 2007). The algorithms
are set to find two clusters of heartbeat representations, that correspond to the normal and
anomalous classes. The clusters are matched to these classes according to their size: the one
with higher number of data points is assigned to the normal class, and the other one to the
anomalous class. Note that this procedure does not require any supervision on the anomaly
labels.

4.2.2 Wasserstein similarity

The variational autoencoder introduced a probabilistic framework for the latent code
of the conventional autoencoder. The encoder neural network, which parameterises an
approximate posterior, derives the expectation and variance of the distribution of latent
codes. Since the anomalous heartbeat sequences are likely to have a distinct latent code
compared to the normal ones, both the predictive mean and variance of the code can serve
as a basis for detection.
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We propose to adopt the similarity between the code distribution of a test sample and a
representative set of other samples as anomaly score. The intuition behind this strategy is
that provided that most of the heartbeats are normal, the anomalous ones will have codes
that are far from the normal codes, in terms of similarity of their approximate posterior
distributions. Figure 3 illustrates this detection strategy.

Figure 3 Illustration of the Wasserstein similarity-based detection approach.

The anomaly score itself is computed in terms of the median Wasserstein similarity between
the test code ztest and a set of NW other codes, as shown in equations 15 and 16.

W (ztest, zi)2 = ‖µztest − µzi‖22 + ‖Σ
1/2
ztest −Σ

1/2
zi ‖2F (15)

score(ztest) = median{W (ztest, zi)2}NWi=1 (16)

where the subscript 2 and F refer to the `2-norm and the Frobenius norm, respectively.

4.2.3 Support vector machine

Support vector machines (Vapnik, 1998) are supervised learning models that try to separate
two data classes by finding an optimal hyper-plane that maximises the separating margin.
Given a datasetX = {xi,yi}Ni=1 withN training examples, where xi ∈ Rdx is an example
in the input space and yi ∈ {−1, 1} is the corresponding class label, the optimal hyper-plane
can be obtained by solving the optimisation problem formulated in Equation 17.

min
w,b,ξi

J(w, ξ) =
1

2
‖w‖+ C

N∑
i=1

ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , N

(17)

where w and b are a weight vector and a bias, respectively. ξi is a slack variable used to allow
for data points to be on the wrong side of the hyper-plane, provided that they suffer a penalty
C. ϕ is non-linear a function that maps the original input space into a high-dimensional
feature space that may allow a better separation of the classes. In this binary classification
formulation, the two data classes correspond to the normal and anomalous classes.
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5 Experiments

5.1 Data

We tested the proposed approach on the ECG5000 electrocardiogram dataset, released by
Eamonn Keogh and Yanping Chen in the UCR Time Series Classification archive (Chen
et al., 2015). This dataset contains 5000 one-dimensional sequences (dx = 1) of length 140
and each sequence corresponds to one heartbeat. Figure 4 illustrates a few examples of
heartbeats randomly extracted from the dataset.

0 140 280 420 560
Samples

−5.0

−2.5

0.0

2.5

A
m
pl
itu
de

Figure 4 Examples of ECG sequences from the ECG5000 dataset.

TheECG5000 dataset includes five class labels. One corresponds to normal ECG sequences
and the remaining ones are anomalous classes, as described in Table 1.

Table 1 Description of the class labels of the ECG5000 dataset.

Abbreviation Description

N Normal

R-on-T PVC R-on-T Premature Ventricular Contraction

PVC Premature Ventricular Contraction

SP or EB Supra-ventricular Premature or Ectopic Beat

UB Unclassified Beat

The dataset is provided with a division into a training and test sets with size 500 and 4500,
respectively. We further split the original training set into two subsets, one for training
(80%) and the other for validation (20%). These sets include both normal and anomalous
examples and these classes are highly imbalanced as show in Figure 5, being the normal
class predominant, followed by the R-on-T premature ventricular contraction anomalous
class.
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Figure 5 Class densities per set.

5.2 Training framework

The proposed model was implemented using the Keras deep learning library for Python
(Chollet, 2015), running on top of TensorFlow (Abadi et al., 2015).
Training was performed using the stochastic gradient descent optimiser AMS-Grad (Reddi
et al., 2018), in mini-batch mode, with a learning rate of 0.001, during 1500 training epochs.
We used a latent space of dimension five, that corresponds to an encoding compression
ratio of 28. The encoder and decoder neural networks are Bi-LSTMs with 256 units in total
(128 in each direction). The denoising autoencoding criterion is implemented by adding
noise to the input sequences with standard deviation σn/σx = 0.8. The sampling process
in the stochastic layer of the variational autoencoder is performed using a single Monte
Carlo sample (L = 1) during training, in similar setting to the work of Kingma and Welling
(2013).
For the computation of the Wasserstein similarity anomaly score we used NW = 4000. To
promote stability during training, the gradients were clipped by value with a limit on their
magnitude of 5. In order to mitigate the KL "collapse" problem in the VAE training, we
adopted the strategy proposed by Bowman et al. (2015) (KL-annealing) in order to vary the
weight λKL of the KL-divergence term in the loss function (equation 12). In this training
scheme, the weightλKL is first approximately zero in order to generate good reconstructions
of the inputs and it is progressively increased to promote smooth encodings and diversity.
We further regularised the model by applying a sparsity penalty in the encoder Bi-LSTM
(`1-norm of the activations) (Arpit et al., 2016), with a weight 10−7. The total number of
parameters of the model is 273420. The model was trained on a NVIDIA GTX 1080TI
GPU, with 11GB of memory, in a machine with an 8th generation i7 processor, and 16GB
of DDR4 RAM.

6 Results

This work focuses on representation learning and anomaly detection of ECG sequences.
This section analyses the latent space representations produced by the proposed model and
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the detection scores obtained on the test set containing 4500 sequences. Finally, an efficiency
analysis is performed on the proposed methods.

6.1 Latent Space Representations

To inspect the learned representations we projected the five dimensional latent feature space
into a two dimensional space by applying Principal Component Analysis and t-Distributed
Stochastic Neighbour Embedding (t-SNE) (van der Maaten and Hinton, 2008) on the test
set codes. The embeddings obtained are shown in Figure 6.

PCA t-SNE

PCA

t-SNE

Normal R-on-T 
PVC PVC    SP or EB  UB

Class Labels
Figure 6 Visualisation of the learned representations for the test set in 2D through PCA and t-SNE.

Each point corresponds to a heartbeat sequence and the color is the class label according
to Table 1. For the t-SNE dimensionality reduction technique, we chose a perplexity of 50
and 2000 iterations.

Figure 6 shows that the representations of sequences with distinct class labels are spread
over different regions of the latent space, meaning that the learned feature representations
have captured relevant information about the heartbeat sequences. It is clear a large cluster
containing mostly normal sequences (green) and several other smaller ones associated with
the other anomalous classes. Such anomalous heartbeats themselves are also mapped into
different regions. In addition, it is also possible to visualise two subgroups of representations
associated with the R-on-T PVC class (orange).
These results show that the variational autoencoder parameterised by recurrent neural
networks is capable of encoding meaningful information about the ECG sequences and their
characteristics. More importantly, these characteristics lead to diverse representations of
normal and anomalous heartbeat sequences, which supports the usefulness of these features
for further tasks, such as anomaly detection.

6.2 Anomaly Detection

We evaluate the results of the detection task using standard metrics such as accuracy,
precision, recall, andF1-score. We also analyse the results in terms of the receiver operating
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characteristic (ROC) curve and the area under the curve (AUC). The scores were weighted
according to the class frequency and computed based on the following guidelines:

• Clustering —since most data is assumed to be normal, we assign the cluster with
higher number of data points to the normal class and the other one to the anomalous
class. The AUC is computed for a ROC curve with the corresponding true positive and
false positive rates.

• Wasserstein similarity —the area under the curve score is computed by, first, finding
the false positive and true positive rates for all detection thresholds on the Wasserstein
score and, then, drawing the corresponding receiver operating characteristic curve. The
remaining metrics are taken considering the detection threshold with best score.

• SVM —The SVM was set to output class membership probabilities and the decision
threshold varied in order to produce a ROC curve.

The anomaly detection scores obtained on the test set are summarised in Table 2.

Table 2 Anomaly detection results obtained on the test set. We emphasise in bold the best scores
produced by unsupervised detection methods. All the scores reported were averaged over
10 runs of the proposed approach.

Metric Hierarchical Spectral k-Means Wasserstein SVM

AUC 0.9569 0.9591 0.9591 0.9819 0.9836
Accuracy 0.9554 0.9581 0.9596 0.9510 0.9843
Precision 0.9585 0.9470 0.9544 0.9469 0.9847

Recall 0.9463 0.9516 0.9538 0.9465 0.9843
F1-score 0.9465 0.9474 0.9522 0.9461 0.9844

For analysing the results it is important to consider if the detection strategy requires
supervision on anomaly labels. The clustering strategy is unsupervised and attained similar
scores for the three algorithms tested. The method based on the Wasserstein similarity
achieves generally the same performance as the clustering approach, although it outperforms
it in terms of area under the curve. This strategy, in addition to the predictive mean of the
code (µz), takes into account its variance, what may explain the better result in terms of
AUC. Finally, it can be seen that the results of both clustering and Wasserstein similarity
are very close to those of SVM, which is a supervised approach that strongly relies on the
existence of anomaly labels.
In Figure 7, we represent the receiver operating characteristic curve for all the detection
strategies proposed.

The ECG5000 dataset was previously used in other works. However, they are generally
focused on the multi-class classification setting, which differs from anomaly detection, that
is a two-class problem. Nevertheless, since the dataset is imbalanced, and most samples
refer to the normal and one of the anomalous classes, it is still relevant to compare the
results with other works that proposed different methodologies. In Table 3 we summarise
the best results reported in recent works that applied supervised and unsupervised models.
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Figure 7 Receiver operating characteristic curve for all detection strategies. The three clustering
algorithms are represented with a single point since they provide an output class, whereas
the Wasserstein and the SVM ROC curves depend on a detection threshold that produces
multiple false positive and true positive rates.

Table 3 Results obtained on the ECG5000 dataset.

Source S/U1 Model AUC Accuracy F1-score

Ours
S VRAE+SVM 0.9836 0.9843 0.9844
U VRAE+Clust/W 0.9819 0.9596 0.9522

Lei et al. (2017) S SPIRAL-XGB 0.9100 − −
Karim et al. (2017) S F-t ALSTM-FCN − 0.9496 −

Malhotra et al. (2016) S SAE-C − 0.9340 −
Liu et al. (2018) U oFCMdd − − 0.8084

1 S ≡ Supervised, U ≡ Unsupervised.
2− score not reported in the cited work.

In these other works the approaches are mostly based on supervised methods, which require
anomaly labels, whereas just one follows an unsupervised method, up to the authors best
knowledge. Under the aforementioned two-class approximation, our unsupervised approach
outperforms the other supervised and unsupervised methods in every score reported.

6.3 Computational Efficiency

We analyse the computational efficiency of our approach in terms of the training, inference
and anomaly scores computation times, shown in Table 4.
The model can infer and produce an anomaly score within a few dozens of milliseconds,
which is a suitable time period for the purpose of ECG monitoring. The computation of the
anomaly score itself is the most expensive step.
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Table 4 Computational efficiency of training, inference and anomaly scores computation. We
report the higher time for detection (Wasserstein, with NW = 4000 representations).

# parameters # timesteps # sequences Training
Time

[ms/seq]

Inference
Time

[ms/seq]

Anomaly
Scores
[ms/seq]

273.420 140 400 2.00 2.42 31.34

7 Conclusions and Future Work

We proposed an unsupervised approach to learn representations of ECG sequences and
used the learned representations for the downstream task of anomaly detection. For
representation learning we trained a variational autoencoder model with encoder and
decoder parameterised with Bi-LSTMs. In addition, we proposed novel methodologies for
detecting anomalies in the latent space in an unsupervised way, dismissing anomaly labels
that are difficult to obtain. On the other hand, the model can be trained with data containing
also anomalous ECG examples and does not requires further preprocessing steps. Also
important, from the computational complexity perspective, is that the proposed method is
efficient and produces anomaly scores within a few dozens of milliseconds.
The representations learned by the model are structured and can be used for multiple
downstream tasks, such as anomaly detection that was the focus of this work. Furthermore,
the results obtained with the proposed detection methods are very promising, since
unsupervised strategies achieved competitive performance to other supervised methods, in
terms of standard detection metrics and receiver operating characteristic.
For future work, we would like to further exploit novel detection strategies that leverage the
latent space representations and test the proposed approach on more datasets, characterised
by different anomaly ratios. In addition, we would like to apply the proposed methods to
multivariate data.
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